Hackpads are smart collaborative documents. Join Hackpad Now.

C64079102���������

12 days ago
Unfiled. Edited by C64079102��������� 12 days ago
生命週期和減數分裂
C64079102��������� 子代從親代遺傳染色體,得到基因
gamete(配子)是帶著基因到下一代的載體
locus(基因座、基因位點):染色體上的固定位置,例如某個基因的所在,而基因座上DNA的各種變化形式,稱為allele(等位基因)
 
無性生殖和有性生殖
無性:例如hydra(水螅)的出芽生殖
*bud:metosis(有絲分裂)細胞的局部,會發展成一個小的水螅,之後脫離母體
 
 
 
sexual life cycle:受精和meiosis(減數分裂)交替進行
在減數分裂期間,染色體的套會減半,但在受精時又增加一倍
父親和母親分別減數分裂產生配子(n=23)→配子經過受精後,產生zygote(合子,2n=46)→合子經過有絲分裂產生體細胞,並發育
*fertilization:配子細胞核的結合,產生的受精卵又稱為合子
 
 
*life cycle(從受孕到生產)
karyotype(核型) 長度、centromere(著絲粒)位置和染色模式都一樣的染色體,會被排在一起,稱為同源染色體,從最長的染色體依序排下去
*同源染色體控制一樣的性狀
性染色體
人體有22對體染色體
2n=46:有兩套,一套所含的染色體數是23
*姊妹染色分體:複製後、長度差不多的一對染色分體→sister chromatid cohesion
*同源染色體指的是不同set之間,例如:分別來自父親和母親
 
 
 
三種sexual life cycle(都是精卵結合和減數分裂的交替,造成遺傳變異,差在事件進行的時間)
1.動物 產生配子後,在受精前,不再會有細胞分裂
經過減數分裂產生配子→受精產生合子→經有絲分裂發育成多細胞
2.植物或藻類 alternation of generation
sporophyte(孢子體)經過減數分裂產生Spores(孢子,n)→經有絲分裂產生gametophyte(pollen grain配子體,n,多細胞)→有絲分裂產生配子→兩個配子結合,產生2n的合子→合子經有絲分裂產生孢子體
3.真菌或原生生物
配子結合後,形成2n的合子→合子並沒有直接發育,而是進行減數分裂,產生單細胞或多細胞的n→進一步進行有絲分裂,產生的細胞會發育成配子
*只有2n可以進行減數分裂
*有絲分裂產生2個子細胞,減數分裂產生4個子細胞
 
 
  
 
減數分裂分兩期(總共分裂兩次)
interphase(間期):染色體複製成2n 
第一期 同源染色體分離(等位基因分離)
n,兩個細胞
Prophase I(前期I)
-centrosome(中心體)移動
-spindle(紡錘體)形成
-核封套破裂*有絲分裂也會
*染色體在整個前期逐漸濃縮
 
*在前期I的早期、上述階段之前,每個染色體會基因對基因、與其同源物配對,並且發生crossing over(互換):非姊妹染色分體會被破壞,並重新結合
*chiasmata(交叉):形成於一對同源染色體之間,是發生互換的位置
-在前期I的後來,來自其中一極的microtubule(微管)會附著在kinetochore(著絲點)上,另一極的則會附著在每個同源物的centomere(中節)上
*姊妹分體上的兩個著絲點,會被蛋白接在一起,所以看起來只有一個
-微管將同源對移向中期板
 
Metaphase I(中期I):染色體以同源對為基準,排排站
-成對的同源染色體被排在中期板,各自面對著其中一極
-同源染色體的兩個分體,會被接在其中一極的著絲點微管上
-另外一組同源染色體的分體,則會接在另一極的微管上
*核型通常呈現的是中期的染色體
 
Anaphase I(後期I) :同源染色體分離
-沿著染色單體的arm、責黏著姊妹分體,幫助同源體分離的蛋白,會被分解
-同源染色體,在紡錘體的引導下,往相反的極移動
-姊妹分體再中節的的cohesion仍然存在,使其成為一個單位,往同一極移動
 
Telophase I(末期I)和Cytokinesis(Cytokinesis):形成兩個n的細胞
-每個染色體仍然具有兩個姊妹分體 
-細胞的每一半都有完整的單套、複製的染色體
-每條染色體都由兩個姊妹分體所組成
-具有一個或是兩個包含非姊妹分體的染色體
-Cleavage furrow(卵裂溝)
 
第二期 姊妹染色體分離
n,四個細胞
 
Prophase II 
-形成紡錘體
-較晚的時候,被centromere(中節)連接的染色分體,會被微管移往中期II的中期板
 
Metaphase II  
-染色體如同有絲分裂,被放在中期板
-因為有絲分裂第一期發生的互換,兩個姐妹染色分體並不帶有一樣的遺傳訊息
-姊妹染色體的著絲點被附著在不同極的微管
 
Anaphase II  
-分解固定姊妹分體的蛋白質(cohesin)
-姊妹染色體正式移向不同極
 
Telophase II(末期II)和Cytokinesis(細胞質分裂):
-細胞核形成
-染色體去濃縮
-細胞質分裂
 
 
 
互換和synapsis(聯會)
...
13 days ago
Unfiled. Edited by C64079102��������� 13 days ago
原子和分子
 
由兩種以上的元素、以固定比例組成的純物質
 
Elements and Compounds  
元素 
-不能再被化學反應分割
-自然界中有92種
-約20–25%是生物體所需的essential elements,例如:人類需要25種,而植物只需要17種
 -trace element只需要一點,例如:脊椎動物需要碘,作為甲狀腺產生的激素的「原料」,可以從食物中攝取
 -有些具有毒性,例如砷會致病、致死,在某些國家,砷會自然地出現在水中,最終成為飲用水
 -O、C、H、N佔了生命體的96%
 *有些生物適應了在毒性環境下生長,例如serpentine plant群落(nonserpentine species經天擇演化而來)
 
 
化合物
-和組成其的元素,具有截然不同的性質→emergent properties
 
原子 保留元素性質的最小單位
原子的組成=中子+質子(帶正電)+電子(帶負電)
*質子和中子被包裝為原子核,因為質子帶正電,原子核也帶正電
*電子在原子核周圍形成像雲一樣的區域
質子和中子差不多重=1 dalton,而電子只有前兩者的1/2000
 
 
Atomic Number and Atomic Mass  
下標 atomic number   質子的數目
上標 mass number= 質子數+中子數
atomic mass 原子的總重
Isotopes 質子數相同,中子數不同
-放射性同位素 會自發性發生衰變(decay) *可應用在生物研究
Radioactive Tracers  放射性同位素+具生物活性的分子→tracer
  • -tracer可用來追蹤代謝時的原子
  • -例如:腎臟病的檢測,只需注射少量的放射性標籤進入血液,在標籤隨著排尿一起到體外後,就能用來分析
  • -tracer也可以結合PET(positron-emission tomography)掃描的技術,用來監測癌症在體內的生長和代謝。例如:帶有標籤的葡萄糖,如果表現量很高,就可能是癌症的象徵(癌組織具有高代謝)
-視元素種類和吸收量而定,放射性元素可能造成危害
*用於醫療的劑量,是相對安全的
 
Radiometric Dating
-半衰期 親同位素衰變一半,所需的時間
-每個同位素都有其特徵的半衰期,不受溫度、壓力或其他環境因素所影響
-放射定年的方法 先測不同同位素的比例,再比較它們,在某生物體形成化石後,經過多少半衰期
 
 
 
energy 有多少潛力來造成改變,或是作功
位能
動能
能量的轉移是不連續的→電子殼層
Electron Distribution and Chemical Properties  
價電子
價殼層
Electron Orbitals  
軌域 有90%的機率找到電子
 
 
化學鍵的形成
電負度、極性、鍵級
強作用力
  • 共價鍵
  • 離子鍵 離子化合物不可用分子式表示
弱作用力 具有可逆性(優點)、對於分子的形狀有很大影響
  • 氫鍵 與電負性原子(如N和O)形成共價鍵時,H會帶有partial正電,產生極性
  • Van der Waals作用力  非極性共價鍵。例如:壁虎爬牆
分子形狀和功能
混成軌域
morphine具有和腦中的endorphin相似的結構,它可以mimic endorphin,結合在腦細胞表面的endorphin受體
 
化學反應,涉及鍵的斷裂和生成
 
水的特性
水 the Molecule that supports All of Life  
-佔地表的1/3
*海水暖化跟冰層變薄,使得浮游植物(phytoplankton)大量生長,
 
氫鍵
*水分子上的O,具有兩個partial負的區域,也就是說,它可以和兩個鄰近的H結合
氫鍵的力量很弱,它會不斷地生成、斷裂、再生成
 
4個水的特徵
1.Cohesion 氫鍵將物質拉在一起,能夠抵抗重力,協助水和養分的運輸。在氫鍵的作用下,當水從葉片蒸發時,蒸發的水會拖拉著底部的水分,帶著它們往上跑
Adhesion 氫鍵使水分子吸附在細胞壁分子上,抵抗重力
表面張力  拉伸或打破液體表面的容易程度。也是氫鍵的影響,例如:蜘蛛在水上行走
2.溫度調節
水可以吸收空氣的熱,將其冷卻後,再釋放回空氣
原因是因為,水具有高比熱
*高比熱也是氫鍵的影響:因為要打斷氫鍵,必須吸收熱,而當氫鍵生成時,會有熱釋放出來。因為吸收的熱大多數都用在打斷氫鍵上了,所以釋放的熱當然會很少  
*使得海洋的環境適合生長
-蒸發熱很高,可以調節全球氣候 
evaporative cooling 因為最熱的分子,具有最高的動能,最容易以氣體形式逸散,所以蒸發後留下的液體,溫度會降低 
3.冷卻時,體積會膨脹
-在冰的結晶中,冰分子之間的距離很寬,密度較小,所以會浮在水上。浮冰會變成屏障,隔絕上方的冷空氣
*因為結冰時,溫度太低,使得分子移動太慢,不足以斷開氫鍵
4.溶劑 與生命有關的分子可以溶在水中
水合層 一堆水分子圍繞在離子旁邊
親水性
疏水性 
 
酸鹼
...
13 days ago
Unfiled. Edited by C64079102��������� 13 days ago
Discovering ecology  
氣候隨緯度和季節變化
Global Climate Patterns 
Regional and Local Effects on Climate 
  • Seasonality  
  • Bodies of Water  
  • Mountains  
Microclimate  
Global Climate Change  
 
 
 
 
terrestrial biomes 
controlled by climate and disturbance
 
Climate and Terrestrial Biomes 
General Features of Terrestrial Biomes  
Disturbance and Terrestrial Biomes  
 
 
 
 
 
 
 
 
 
Aquatic biomes
Zonation in Aquatic Biomes 
Lakes 
Wetlands  
Streams and Rivers  
Estuaries  
Intertidal Zones  
Oceanic Pelagic Zone  
Coral Reefs  
Marine Benthic Zone  
Dispersal and Distribution  
  • Natural Range Expansions and Adaptive Radiation  
  •  Species Transplants 
Biotic Factors  
Abiotic Factors  
  • Temperature  
  • Water and Oxygen  
  • Salinity  
  • Sunlight  
  • Rocks and Soil  
  •  
 
 
 
交互作用限制物種的分布
 
  •  
 
行為生態學
the How and Why of Animal Activity 
 
同一刺激可引發簡單或複雜的反應
 
  • Fixed Action Patterns  
  • Migration  
Behavioral Rhythms  
Animal Signals and Communication  
  • Forms of Animal Communication  
  • Pheromones  
 
 
 
 
 
 
Learning
藉由經驗與行為建立特殊的連結
 
Experience and Behavior  
Learning
  • Imprinting  
  • Spatial Learning and Cognitive Maps  
  • Associative Learning 
  • Cognition and Problem Solving  
  • Development of Learned Behaviors  
  • Social Learning  
  •  
 
行為的多樣性
源於Selection for individual survival and reproductive success
Evolution of Foraging Behavior 
  • Optimal Foraging Model  
  •  Balancing Risk and Reward 
Mating Behavior and Mate Choice  
  • Mating Systems and Sexual Dimorphism  
  • Mating Systems and Parental Care  
  • Sexual Selection and Mate Choice  
  • Mate Choice by Females  
  • Male Competition for Mates  
...
13 days ago
Unfiled. Edited by C64079102��������� 13 days ago
 
This pad text is synchronized as you type, so that everyone viewing this page sees the same text.  This allows you to collaborate seamlessly on documents!
 
細胞的結構和功能
the Fundamental Units of Life  
 
7.1Biologists use microscopes
and biochemistry to study cells
Microscopy  
Cell Fractionation  
 
 
7.2 Eukaryotic cells have internal
membranes that compartmentalize
their functions
Comparing Prokaryotic and Eukaryotic Cells  
A Panoramic View of the Eukaryotic Cell  
 
 
7.3 The eukaryotic cell’s genetic
instructions are housed in the
nucleus and carried out by the
ribosomes
The nucleus: Information Central  
Ribosomes: Protein Factories  
 
 
7.4 The endomembrane system
regulates protein traffic and
performs metabolic functions
The Endoplasmic Reticulum: Biosynthetic Factory  
  • Functions of Smooth ER  
  • Functions of Rough ER 
The Golgi Apparatus: Shipping and Receiving Center  
Lysosomes: Digestive Compartments  
 Vacuoles: Diverse Maintenance Compartments  
 The Endomembrane System: A Review
 
 
7.5 Mitochondria and chloroplasts
change energy from one form
to another
The Evolutionary Origins of Mitochondria and Chloroplasts
Mitochondria: Chemical Energy Conversion  
Chloroplasts: Capture of Light Energy  
Peroxisomes: Oxidation  
  
 
 
7.6 The cytoskeleton is a network of
fibers that organizes structures
and activities in the cell
Roles of the Cytoskeleton: Support and Motility  
Components of the Cytoskeleton 
  • Microtubules  
  • Centrosomes and Centrioles  
  • Cilia and Flagella
  • Microfilaments (Actin Filaments)  
  • Intermediate Filaments  
  •  
 
 
 
 
7.7 Extracellular components and
connections between cells help
coordinate cellular activities
Cell Walls of Plants 
The Extracellular Matrix (ECM) of Animal Cells  
Cell Junctions  
  • Plasmodesmata in Plant Cells  
  • Tight Junctions, Desmosomes, and Gap Junctions in Animal Cells  
  •  
 
 
 
 
7.8 A cell is greater than the sum
of its parts  
 
 
細胞膜
Life at the edge  
8.1 Cellular membranes are fluid
mosaics of lipids and proteins
The Fluidity of Membranes  
Evolution of Differences in Membrane Lipid Composition  
Membrane Proteins and Their Functions 
The Role of Membrane Carbohydrates in Cell-Cell Recognition  
Synthesis and Sidedness of Membranes  
 
 
 
8.2 Membrane structure results in
selective permeability
The Permeability of the Lipid Bilayer 
Transport Proteins  
 
 
...
13 days ago
Unfiled. Edited by C64079102��������� 13 days ago
 
This pad text is synchronized as you type, so that everyone viewing this page sees the same text.  This allows you to collaborate seamlessly on documents!
 
演化機制
Endless Forms Most Beautiful  
21.1 the Darwinian revolution
challenged traditional views
of a young Earth inhabited by
unchanging species
 
Scala Naturae and Classification of Species  
Ideas About Change over time  
lamarck’s Hypothesis of Evolution  
 
 
 
21.2 Descent with modification by
natural selection explains the
adaptations of organisms and
the unity and diversity of life
 
Darwin’s Research  
The Voyage of the Beagle  
Darwin’s Focus on Adaptation 
Ideas from The Origin of Species  
  • Descent with Modification  
  • Artificial Selection, Natural Selection, and Adaptation  
Key Features of Natural Selection  
 
 
 
21.3 Evolution is supported by an
overwhelming amount of
scientific evidence 
 
Direct observations of Evolutionary Change  
  • Natural Selection in Response to Introduced Species  
  • The Evolution of Drug-Resistant Bacteria 
Homology  
  • Anatomical and Molecular Homologies  
  • Homologies and “Tree Thinking”  
  • A Different Cause of Resemblance: Convergent Evolution  
the Fossil Record 
Biogeography  
What Is theoretical About Darwin’s view of life?  
 
 
 
  •  
 
phylogenetic系統發生 Reconstruction  
Investigating the tree of Life  
22.1 Phylogenies show evolutionary
relationships
Binomial Nomenclature 
Hierarchical Classification  
Linking Classification and Phylogeny  
What We Can and Cannot Learn from Phylogenetic Trees  
 Applying Phylogenies
 
22.2 Phylogenies are inferred from
morphological and molecular
data
Morphological and Molecular Homologies  
Sorting Homology from Analogy  
Evaluating Molecular Homologies  
 
 
 
22.3 Shared characters are used to
construct phylogenetic trees
Cladistics  
  • Shared Ancestral and Shared Derived Characters  
  • Inferring Phylogenies Using Derived Characters 
Phylogenetic Trees with Proportional Branch Lengths  
Maximum Parsimony and Maximum Likelihood  
Phylogenetic Trees as Hypotheses  
 
  •  
22.4 An organism’s evolutionary
history is documented in its
genome
Gene Duplications and Gene Families 
Genome Evolution  
 
 
22.5 Molecular clocks help track
evolutionary time
Molecular Clocks 
  • Differences in Clock Speed  
  • Potential Problems with Molecular Clocks  
Applying a Molecular Clock: Dating the Origin of HIV  
 
 
 
22.6 Our understanding of the tree
of life continues to change
based on new data 
From Two Kingdoms to Three Domains 
...
13 days ago
Unfiled. Edited by C64079102��������� 13 days ago
 
病毒
A Borrowed Life  
26.1 A virus consists of a nucleic acid
surrounded by a protein coat
The Discovery of Viruses: Scientific Inquiry 
Structure of Viruses 
  • Viral Genomes  
  • Capsids and Envelopes  
  •  
 
 
 
26.2 Viruses replicate only in host
cells
General Features of Viral Replicative Cycles 
Replicative Cycles of Phages  
  • The Lytic Cycle  
  • The Lysogenic Cycle  
  • Bacterial Defenses Against Phages  
Replicative Cycles of Animal Viruses  
  • Viral Envelopes  
  • Viral Genetic Material  
Evolution of Viruses  
 
 
 
 
26.3 Viruses and prions are formidable
pathogens in animals and plants  
Viral Diseases in Animals 
Emerging Viruses  
Viral Diseases in Plants  
Prions: Proteins as Infectious Agents  
 
 
 
 
 
原核
Masters of Adaptation  
27.1 Structural and functional
adaptations contribute to
prokaryotic success
Cell-Surface Structures 
Motility  
  • Evolutionary Origins of Bacterial Flagella  
Internal Organization and DNA  
Reproduction  
 
 
 
 
 
 
27.2 Rapid reproduction, mutation,
and genetic recombination
promote genetic diversity in
prokaryotes
Rapid Reproduction and Mutation  
Genetic Recombination 
  • Transformation and Transduction  
  • Conjugation and Plasmids  
  • The F Factor in the Chromosome  
  • R Plasmids and Antibiotic Resistance  
  •  
 
 
27.3 Diverse nutritional and metabolic
adaptations have evolved in
prokaryotes
The Role of Oxygen in Metabolism 
Nitrogen Metabolism  
Metabolic Cooperation  
 
 
 
 
27.4 Prokaryotes have radiated into
a diverse set of lineages
An Overview of Prokaryotic Diversity 
Bacteria  
Archaea
 
 
 
 
 
 
27.5 Prokaryotes play crucial roles
in the biosphere
Chemical Recycling  
Ecological Interactions  
 
 
 
27.6 Prokaryotes have both beneficial
and harmful impacts on humans  
Mutualistic Bacteria  
...
13 days ago
Unfiled. Edited by C64079102��������� 13 days ago
 
This pad text is synchronized as you type, so that everyone viewing this page sees the same text.  This allows you to collaborate seamlessly on documents!
 
 
植物結構
Are Plants Computers?  
35.1 Plants have a hierarchical
organization consisting of
organs, tissues, and cells
Basic Vascular Plant Organs: Roots, Stems, and Leaves  
  • Roots 
  • Stems  
  • Leaves  
Dermal, Vascular, and Ground Tissues  
Common Types of Plant Cells  
 
 
 
Examples of Differentiated Plant Cells  
 
 
35.2 Different meristems generate
new cells for primary and
secondary growth
 
 
 
 
 
35.3 Primary growth lengthens
roots and shoots
Primary Growth of Roots 
Primary Growth of Shoots  
  • Stem Growth and Anatomy  
  • Leaf Growth and Anatomy  
  •  
 
 
 
 
 
35.4 Secondary growth increases
the diameter of stems and roots
in woody plants
The Vascular Cambium and Secondary Vascular Tissue  
The Cork Cambium and the Production of Periderm  
Evolution of Secondary Growth  
 
 
35.5 Growth, morphogenesis, and
cell differentiation produce
the plant body  
Model Organisms: Revolutionizing the Study of Plants  
Growth: Cell Division and Cell Expansion  
  • The Plane and Symmetry of Cell Division 
  • Orientation of Cell Expansion  
Morphogenesis and Pattern Formation  
Gene Expression and the Control of Cell Differentiation  
Shifts in Development: Phase Changes 
Genetic Control of Flowering  
 
 
 
運輸
A Whole Lot of Shaking Going On  
36.1 Adaptations for acquiring
resources were key steps in the
evolution of vascular plants
Shoot Architecture and Light Capture 
  • The Photosynthesis–Water Loss Compromise  
Root Architecture and Acquisition of Water and Minerals  
 
 
 
36.2 Different mechanisms transport
substances over short or long
distances
The Apoplast and Symplast: Transport Continuums  
Short-Distance Transport of Solutes Across Plasma Membranes  
Short-Distance Transport of Water Across Plasma Membranes  
  • How Solutes and Pressure Affect Water Potential
  • Water Movement Across Plant Cell Membranes  
  • Aquaporins: Facilitating Diffusion of Water 
Long-Distance Transport: The Role of Bulk flow  
 
 
 
 
36.3 Transpiration drives the transport
of water and minerals from roots
to shoots via the xylem
Absorption of Water and Minerals by Root Cells  
Transport of Water and Minerals into the xylem  
Bulk flow Transport via the xylem 
  • Pushing Xylem Sap: Root Pressure  
  • Pulling Xylem Sap: 
  • The Cohesion-Tension Hypothesis  
  • Transpirational Pull 
  • Cohesion and Adhesion in the Ascent of xylem Sap  
...

Contact Support



Please check out our How-to Guide and FAQ first to see if your question is already answered! :)

If you have a feature request, please add it to this pad. Thanks!


Log in / Sign up